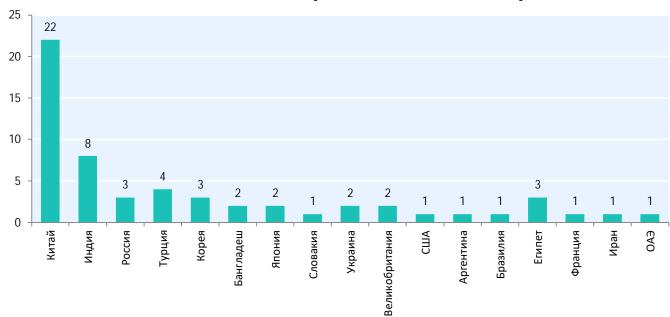


Атомная энергетика в мире

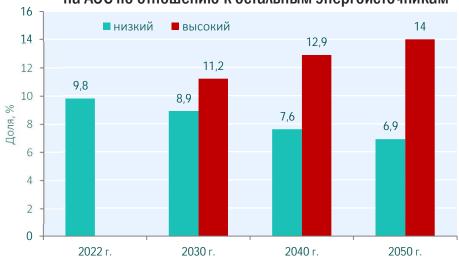

В эксплуатации в 32 странах мира:

- 410 ядерных энергетических реакторов
- суммарная мощность 368,6 ГВт (эл.)
- ~10% объема электрогенерации

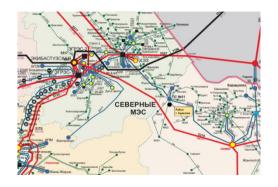
Производитель	Тип реактора	Диапазон мощности существующих реакторов, МВт	Диапазон проектируемых реакторов средней мощности, МВт
Westinghouse (США)	PWR	1000	225
AREVA (Франция)	PWR	1000–1600	300
POCATOM (Россия)	ВВЭР	1000–1200	170–600
General Electric (США) & Hitachi (Япония)	BWR	1000–1400	-
Babcock & Wilcox (США)	PWR	гражданских нет	180
Atomic Energy of Canada Limited (Канада)	PHWR (CANDU)	660–1000	660
Toshiba (Япония)	BWR	1000–1350	-
Mitsubi shi Heavy Industri es (Япония)	PWR	1000–1400	-
CNNC (Китай)	CNP, CNR (PWR)	1000–1100	600
КЕРСО (Южная Корея)	OPR (PWR), APR	1000–1400	-

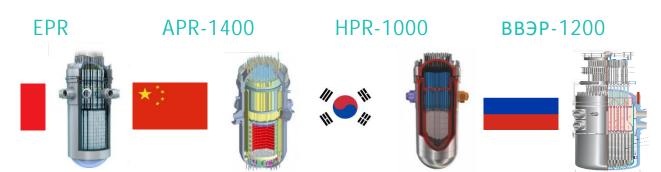
Атомная энергетика в мире

В стадии строительства в мире:


- 58 ядерных энергетических реакторов
- суммарная мощность 60,2 ГВт (эл.)
- ~57 % Китай, Россия, Индия

Прогнозы роста установленной мощности атомных генерирующих мощностей в мире


Прогнозы роста доли производства электроэнергии на АЭС по отношению к остальным энергоисточникам


В связи с задачей по достижению углеродной нейтральности к 2060 году и прогнозируемым дефицитом электроэнергии, изучается возможность развития в стране безопасной и экологичной атомной энергетики.

- Рассматриваются только установки с опытом эксплуатации.
- В 2021 году актуализирован Маркетинговый раздел ТЭО строительства АЭС в части уточнения выбора района размещения.

 После изучения имеющихся вариантов АЭС составлен шорт-лист из четырех компаний-лидеров рынка атомных технологий: EDF, KHNP, CNNC и «Росатом».

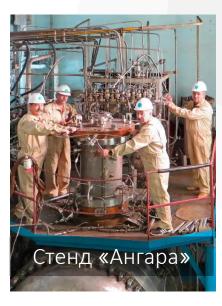


МИССИЯ – **Научно-техническая поддержка политики Правительства Казахстана в области мирного использования атомной энергии**

СТРАТЕГИЧЕСКИЕ НАПРАВЛЕНИЯ ДЕЯТЕЛЬНОСТИ

- I. Развитие атомной энергетики в РК
- II. Развитие технологий УТС и водородной энергетики
- III. Радиационная безопасность и экология Казахстана
- IV. Поддержка режима нераспространения и ДВЗЯИ
- V. Информационная и кадровая поддержка атомной отрасли

РГП «НАЦИОНАЛЬНЫЙ ЯДЕРНЫЙ ЦЕНТР РЕСПУБЛИКИ	КАЗАХСТАН» (I г. Курчатов	НЯЦ РК) (183)
ФИЛИАЛЫ		
Институт атомной энергии (ИАЭ)	г. Курчатов	(759)
Институт радиационной безопасности и экологии (ИРБЭ)	г. Курчатов	(255)
Институт геофизических исследований (ИГИ) г. Курчатов, г. Алматы, сеть сейсмостанций по регионам РК		(330)
Предприятие «Байкал»	г. Курчатов	(309)



ИССЛЕДОВАТЕЛЬСКАЯ БАЗА

В рамках изучения вопросов безопасности водоохлаждаемого энергетического реактора НЯЦ РК выполняет экспериментальные исследования по изучению процессов взаимодействия расплава активной зоны реактора (кориума):

- с теплоносителем;
- со сталью днища силового корпуса реактора;
- с бетоном при наличии или отсутствии воды;
- при охлаждении поверхности расплава водой и имитации остаточного тепловыделения в слитом расплаве,
- с защитным покрытием бетонной ловушки расплава.

Экспериментальная

Экспериментальная секция

Проект CORMIT (Toshiba, Marubeni, Япония)

Проведение экспериментальных исследований взаимодействия расплава АЗ с жаростойкими материалами защитного покрытия подреакторной ловушки расплава.

- выполнена серия калибровочных и 7 полномасштабных экспериментов на установке «Лава-Б»;
- выполнены постэкспериментальные материаловедческие исследования.

Наши научно обоснованные данные нашли реальное применение – сегодня такие ловушки устанавливаются на действующих АЭС Японии.

Проект "Fukushima Debris" (Marubeni, Япония)

Моделирование и изучение свойств застывших фрагментов расплава АЗ реакторов АЭС Фукусима-1 для выработки рекомендаций по переработке реальных фрагментов.

- проведено 3 крупномасштабных эксперимента на установке «Лава-Б» и 12 маломасштабных на стенде «ВЧГ-135»;
- выполнен комплекс материаловедческих исследований по определению свойств затвердевшего кориума и изучены возможность и скорость его резки абразивным инструментом.

Смоделирован расплав топлива, исследованы его физические и химические свойства, сформулированы рекомендации для разработки инструментов и методов по обращению с реальным расплавом на аварийных блоках АЭС «Фукусима-1» для наших японских коллег.

Проект EAGLE-3 (JAEA, Япония)

Исследования процессов охлаждения имитатора расплавленного топлива в бассейне с натрием (стенд EAGLE) и исследование экспериментальных устройств, испытанных в реакторе ИГР, для решения ключевых проблем безопасности при ликвидации последствий аварии с плавлением АЗ реакторов на быстрых нейтронах:

- успешно выполнена программа всех внереакторных исследований, подтверждена возможность перемещения расплава в полость под АЗ реактора;
- получены экспериментальные данные по физико-химическому составу расплава после взаимодействия его с жидким натрием;
- успешно проведены все 3 предусмотренные программой реакторных эксперимента.

Проект SAIGA (CEA, Франция)

Изучение поведения топливной сборки реактора ASTRID в условиях аварии с потерей расхода теплоносителя (типа ULOF).

- разработан Технический проект экспериментального устройства (ЭУ) SAIGA;
- изготовлен физический макет ЭУ;
- разработан и согласован Технический проект петли жидкометаллического натрия;
- выполнен анализ и обоснование безопасности при проведении физических исследований с макетом ЭУ;
- на АО «УМЗ» изготовлена вторая партия топлива нестандартного обогащения для ЭУ (первая партия изготовлена в 2021 году).

Проект БРЕСТ-ОД-300 (ОАО «НИКИЭТ», РФ)

Успешно выполнена программа реакторных испытаний смешанного нитридного уран-плутониевого топлива (СНУП) нового российского реактора БРЕСТ-ОД-300 повышенной безопасности, строительство которого начато в настоящее время в рамках проекта «Прорыв». С сентября 2021 по январь 2022 года:

- на реакторе ИГР проведена серия реакторных испытаний
 5 устройств с тепловыделяющими элементами,
 содержащими СНУП топливо;
- получены значения разрушающего энерговыделения
 и определены предельные рабочие температура и давление
 для оболочки твэла.

- Вероятность тяжелой аварии, связанной с разрушением АЗ для реакторов поколения III+ составляет 10-7 событий/год.
- Современный реактор обладает активными и пассивными взаимодублирующими системами безопасности.
- Санитарно-защитная зона реактора поколения III+ ограничивается площадкой АЭС, зона планирования защитных мероприятий (3ПЗМ) для населения не более 3 км.
- При проектировании и создании реакторов поколения III+
 используется принцип глубокоэшелонированной защиты от выхода
 РВ за пределы площадки, а также концепция «устранение аварии
 на стадии проектирования».

Защита АЭС от внешних факторов

Работы начаты в 2010 году при поддержке МЭ США и АНЛ, в соответствии с требованиями МАГАТЭ обогащение топлива снижено до уровня ниже 20%, с 90% до 19,75% по U-235.

Реактор ИВГ.1М

- 06 мая 2022 г. успешно проведен физический пуск с низкообогащенным урановым (НОУ) топливом.
- 10 августа 2022 г. успешно завершены реакторные исследования в рамках физического пуска.
- 27 октября 2022 г. начата серия из 9 энергетических пусков
- 28 апреля 2023 г. КАЭНК МЭ РК утвержден Паспорт реактора.
- 18 мая 2023 г. ИВГ.1М с НОУ-топливом начал работу.

Реактор ИГР

Реактор ИГР

Ведутся работы по оптимизации состава и конфигурации активной зоны с НОУ-топливом для сохранения нейтронно-физических и эксплуатационных характеристик.

- совместно с АО «УМЗ» завершены работы по разбавлению свежего ВОУ-топлива.
- специалистами НЯЦ РК разработана концепция утилизации ВОУ-топлива методом сухого смешивания, создан лабораторный участок по отработке технологии разбавления.
- прорабатываются вопросы создания свежего НОУ-топлива.

Временное хранение РАО

Извлечение УГТ Разбавление и утилизация облученного ВОУ-топлива из хранилища Транспортировка Схема технологии контейнеров с УГТ на участок переработки утилизации ВОУ в рамках которой: Участок переработки УГТ Выгрузка контейнеров Измельчение УГТ с УГТ в предварительном хранилище Цементирование Смешивание УГТ с в бочки смешанного УГТ природным ураном Выдержка бочек до застывания цемента Транспортировка РАО

Захоронение РАО

Разработана собственная технология разбавления и утилизации облученного ВОУ-топлива реактора ИГР методом сухого смешивания,

- технология получила положительное экспертное заключение ΜΑΓΑΤЭ:
- проведены предварительные исследования и полномасштабные испытания технологии на базе собственной инфраструктуры, показавшие ее полное соответствие всем сформулированным экспертами МАГАТЭ критериям.

Высокая оценка работам по конверсии дана зам. министра энергетики США Джилл Руби в рамках ее визита в НЯЦ в октябре прошлого года.

Расширение сотрудничества (Корея, Китай)

- С корейскими коллегами провели научно-технический семинар, обменялись информацией о проблематике проводимых исследований, экспериментальных возможностях друг друга. Рассчитываем принять корейскую делегацию в Курчатове, продемонстрировать нашу экспериментальную базу, обсудить перспективные направления сотрудничества.
- С коллегами из Китайской национальной ядерной корпорации (CNNC) обсудили возможные пути сотрудничества, выходим на взаимодействие с китайскими учеными из Института атомной энергии (CIAE). На полях 67-й сессии генеральной конференции МАГАТЭ подписан меморандум о сотрудничестве с Институтом атомной энергии (СІАЕ).

КТМ – первый в мире токамак, предназначенный для проведения широкого спектра материаловедческих исследований с целью разработки материалов для рабочей камеры и внутрикамерных элементов будущих термоядерных реакторов, включая строящийся во Франции ИТЭР.

ФИЗИЧЕСКИЙ ПУСК ТОКАМАКА КТМ, ПАРАМЕТРЫ ПЛАЗМЕННОГО РАЗРЯДА

I этап (9 июня 2017 года):

- максимальный ток в импульсе ~10 кА
- время импульса ~20 мс
- тороидальное поле $B_{TO} \sim 0.35 \, \text{Тл}$
- сечение плазменного шнура круглое
- рабочая среда: водород, гелий, аргон

II этап – завершающий (20 ноября 2019 года):

- максимальный ток в импульсе ~100 кА
- время импульса 65 мс
- тороидальное поле $B_{TO} \sim 0.9 \, \text{Тл}$
- сечение плазменного шнура круглое
- рабочая среда: водород

ДОСТИГНУТЫЕ ПАРАМЕТРЫ

В 2022 году:

- ток плазмы 500 кА
- длительность разряда > 1 с

НОМИНАЛЬНЫЕ ПАРАМЕТРЫ

- ток плазмы **750** к**A**
- длительность разряда ~5 с

Для разработки и развития инновационных устройств, материалов и технологий для обеспечения эффективного внедрения и использования водородной энергетики в 2022 году создана и оснащена современным оборудованием специальная лаборатория, осуществляющая:

- разработку нового способа получения водорода и установки для проведения прикладных исследований на основе пиролиза метана СВЧ-разрядом;
- получение перспективных сорбционно-активных материалов для хранения и транспортировки водорода;
- разработку конструкции, метода формирования и изготовление модельных образцов электродов твердооксидных топливных элементов.

НЯЦ РК имеет опыт и необходимую инфраструктуру по обращению с РАО, включая транспортно-технологические системы и оборудование, хранилище АИИИ и РАО, участвовал в ликвидации радиационно-опасных ситуаций на ИХМЗ, в пос. Токрау и др.

В перспективе – реализация цикла «изъятие – переработка – компактирование – окончательное захоронение», создание:

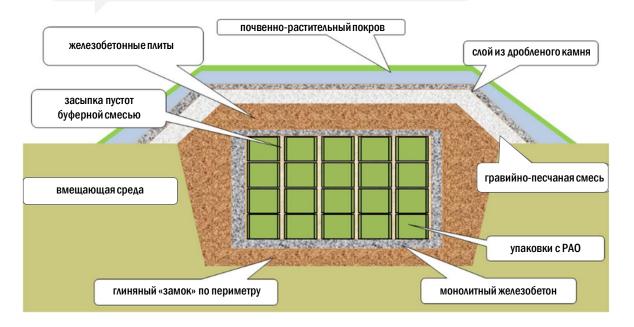
- центра по переработке и долговременному хранению (захоронению) РАО и ИИИ;
- пунктов хранения/захоронения РАО, образованных в ходе реабилитационных мероприятий на СИП.

Создается инфраструктура для обращения с ОЯТ исследовательских реакторов НЯЦ РК.

Плошадка ДХОЯТ БН-350

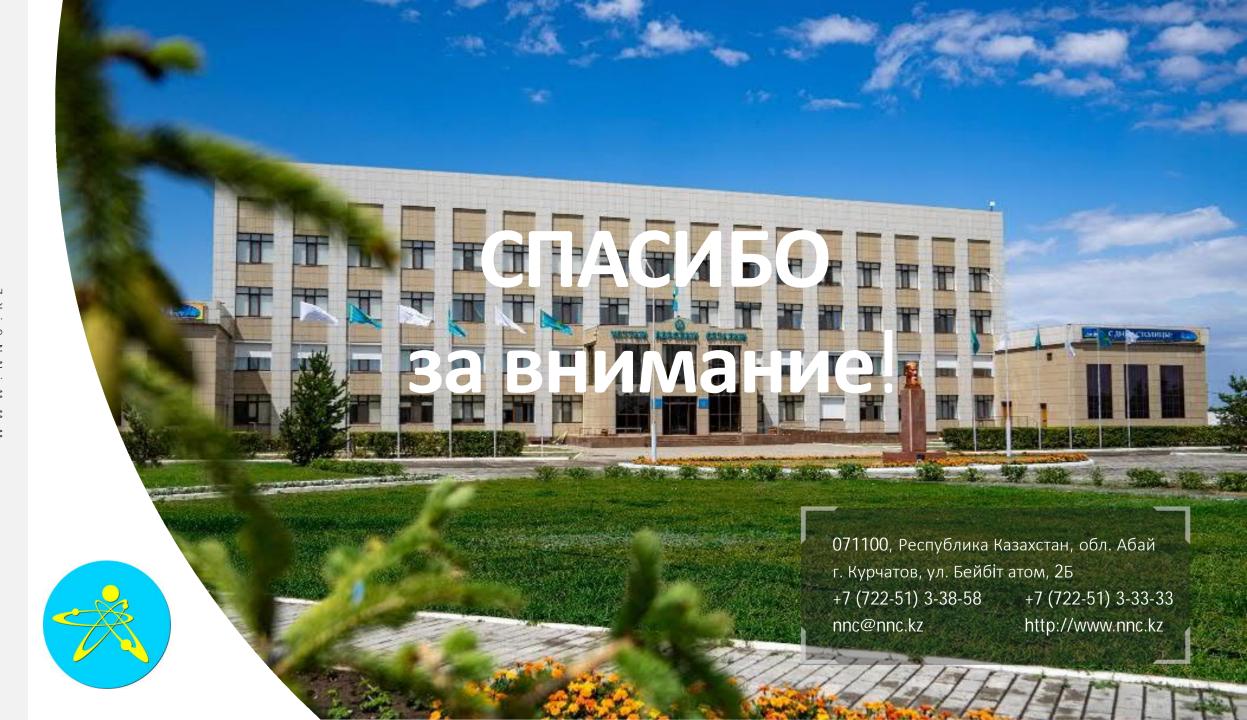
В настоящее время на КИР «Байкал-1» (СИП) находятся:

- Площадка долговременного безопасного хранения под контролем и гарантиями МАГАТЭ транспортно-упаковочных контейнеров (ТУК) с ОЯТ реактора БН-350.
- Хранилище отработанных АИИИ, представляющее собой мощное сооружение из специального бетона, гарантирующее сохранность АИИИ и исключающее случайный доступ, т.к. ячейки хранилища с многотонными крышками, снять которые можно только с использованием мощного козлового крана и специального захвата.
- Временные хранилища исторических РАО ангарного типа.


Создание пункта хранения радиоактивных отходов (РАО) CSA - Bird view © Andra

- Строительство хранилища рассматривалось
 на встречах с нашими французскими коллегами
 из «Nuclear Valley», «Andra» и «Curium» в качестве
 перспективного совместного проекта,
- 30 ноября прошлого года в рамках визита Президента Казахстана во Францию подписан меморандум о Взаимопонимании в отношении технического сотрудничества в сфере обращения с РАО между НЯЦ РК и Национальным агентством Франции по обращению с радиоактивными отходами «Andra».

РАЗМЕЩЕНИЕ РАО НИЗКОЙ АКТИВНОСТИ


РАЗМЕЩЕНИЕ РАО СРЕДНЕЙ АКТИВНОСТИ

Подготовка квалифицированных научных кадров

- На базе НЯЦ РК функционируют 3 филиала кафедр региональных университетов.
- Созданы условия для успешной самореализации, налажена работа по подготовке и переподготовке кадров, защите диссертаций без отрыва от производства.
- Сотрудники НЯЦ РК входят в состав 3-х диссертационных советов по специальностям «Техническая физика» и «Физические и химические науки».
- С 2017 года присваивается на конкурсной основе именная стипендия Генерального директора лучшим молодым ученым.
- Ежегодно проводится конференция-конкурс
 НИОКР молодых ученых и специалистов НЯЦ РК, летняя школа «Юный физик».

